

SOLUCIONARIO: Guía 3. Raíces

Asignatura:	MATEMATICA				
Curso(s):	4° MA – 4°MB				
Profesor(a):	a): FABIOLA PELLEGRINI – LESLIE CID				
Fecha:	27 DE MARZO 2020				

Este solucionario sirve para comparar tus respuestas, según lo contestado en la <u>Guía</u> y poder comprobar lo que sabes y lo que debes reforzar. Te sugiero utilizarlo, después que hayas respondido todas las preguntas.

Recordemos...

Nota: Todas las reglas se cumplen bidireccionalmente:

				Nombre o descripción de la Propiedad
1)	$\sqrt[n]{a} \cdot \sqrt[n]{b}$	=	$\sqrt[n]{a \cdot b}$	Producto de Raíces de igual Índice.
2)	$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{a} : \sqrt[n]{b}$	=	$\sqrt[n]{\frac{a}{b}}$	Cociente de Raíces de igual Índice.
3)	$\sqrt[n]{\sqrt[m]{a}}$	=	$\sqrt[n-m]{a}$	Raíz de Raíz.
4)	$(\sqrt[n]{a})^m$	=	$\sqrt[n]{a^m}$	Potencia de una Raíz.
5)	$a \cdot \sqrt[n]{b}$	=	$\sqrt[n]{a^n \cdot b}$	Ingresar un factor al interior de raíz.
6)	$\sqrt[n]{a^m}$	=	$\sqrt[n\cdot p]{a^{m\cdot p}}$	Cambio de Índice.
7)	$\sqrt[n]{a^m}$	=	$a^{\frac{m}{n}}$	Conversión de Raíz a Potencia

Soluciones

1.B	2.A	3.E	4.B	5.C	6.A	7.A	8.E	9.D	10.E
11.B	12.A	13.A	14.B	15.A	16.A	17.D	18.C	19.C	20.B

Para hacer revisión de su guía paso a paso en los siguientes procedimientos, considere la numeración dada a cada propiedad en la tabla de arriba, mediante los cuales se explica el porqué de cada operación.

①
$$5\sqrt{12} - 2\sqrt{27}$$
 Descomposición de raices $5\sqrt{4.3} - 2\sqrt{9.3}$ Descomposición de raices $5.2\sqrt{3} - 2.3\sqrt{3}$ $10\sqrt{3} - 6\sqrt{3} = 4\sqrt{3}$

2
$$\sqrt{\frac{6+\frac{1}{4}}{4}} - \sqrt{\frac{5+\frac{1}{16}}{16}} + \sqrt{\frac{8-\frac{4}{4}}{25}}$$
 Operatoria de praeciones $\sqrt{\frac{24+1}{4}} - \sqrt{\frac{80+1}{16}} + \sqrt{\frac{200-4}{25}}$ $\sqrt{\frac{25}{4}} - \sqrt{\frac{81}{16}} + \sqrt{\frac{196}{25}}$ $-\sqrt{\frac{81}{16}} + \sqrt{\frac{196}{25}}$ $-\sqrt{\frac{9}{4}} + \frac{14}{5} = \frac{50-45+56}{20} = \frac{61}{20}$

3
$$\sqrt[3]{\alpha^{2\times+2}}$$
 $\sqrt[3]{\alpha^{\times+1}}$ $\sqrt[3]{\alpha^{2\times+2}}$ $\sqrt[3]{\alpha^{\times+1}}$ $\sqrt[3]{\alpha^{\times+2}}$ $\sqrt[3]{\alpha^{\times+1}}$ $\sqrt[3]{\alpha^{\times+3}}$ $\sqrt[3]{\alpha^{\times+1}}$ $\sqrt[3]{\alpha^{$

(4)
$$\sqrt{\frac{2}{3}} = \sqrt{\frac{2}{3}} =$$

(5)
$$2\sqrt{7} + \sqrt{14}$$
 $\sqrt{\frac{7}{7}} = \sqrt{\frac{2\sqrt{7} + \sqrt{14}}{\sqrt{7}}} = \sqrt{\frac{2\sqrt{7} + \sqrt{14}}{\sqrt{7}}} = \sqrt{\frac{2\sqrt{7} + \sqrt{14}}{\sqrt{7}}}$

$$\Rightarrow \frac{2\sqrt{49} + \sqrt{98}}{7} = \frac{2 \cdot 7 + \sqrt{49 \cdot 2}}{7} = \frac{14 + 7\sqrt{2}}{7} \Rightarrow$$

$$\Rightarrow \frac{7(2+\sqrt{2})}{7} = \frac{2+\sqrt{2}}{1}$$

factoritain (b)
$$\sqrt{12} - \sqrt{2} + \sqrt{8} - \sqrt{3}$$
 Descomposición de $\sqrt{4\cdot3} - \sqrt{2} + \sqrt{4\cdot2} - \sqrt{3}$ Peducción de $\sqrt{3} + \sqrt{2} + \sqrt{2} = \sqrt{3}$ Reducción de terminos semejantes.

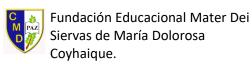
(750 +
$$\sqrt{512} - \sqrt{242}$$
): $\sqrt{2}$

Descomposition

 $(\sqrt{25\cdot2} + \sqrt{256\cdot2} - \sqrt{121\cdot2}): \sqrt{2}$

Descomposition

de valces.


(5 $\sqrt{2} + \sqrt{10} + \sqrt{2} - \sqrt{10} + \sqrt{2}$): $\sqrt{2}$

Peaucción

 $10\sqrt{2}: \sqrt{2} = 10$

Dimpurposition

O bien $10\sqrt{2} = 10$
 $\sqrt{2}$

prop.
$$3\sqrt{27} \times .27^{-3}$$
 combin base rultiplicar prop. $3\sqrt{27} \times -3$ = $3\sqrt{(3^3)^{\times -3}}$ = $3\sqrt{3^{3\times -9}}$ =)

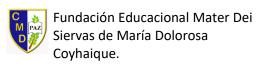
=) $3\frac{3\times -9}{3}$ = $3\frac{3(x-3)}{3}$ = $3\frac{3}{3}$ = $3\frac{3}{3}$

9
$$(5\sqrt{2}-\sqrt{3})(\sqrt{3}+5\sqrt{2})$$

Forma 1:
 $(5\sqrt{2}-\sqrt{3})(5\sqrt{2}+\sqrt{3})$ Ordenar el segundo factor
 $(5\sqrt{2})^2-\sqrt{3}^2$ Por factorización "suma pordefer"

5° 12 - 3 25.2 - 3

$$25 \cdot 2 = 3$$
 = 47//


Forma 2:
$$(5\sqrt{2} - \sqrt{3})(\sqrt{3} + 5\sqrt{2})$$

Forma 2:

$$(5\sqrt{2}-\sqrt{3})(\sqrt{3}+5\sqrt{2})$$
 Multiplicar,
 $5\sqrt{6}+25\sqrt{4}-\sqrt{9}-5\sqrt{6}$ Peducir terminor
 $25\cdot 2-3$ Semejantes
 $50-3=47/1$

(10)
$$\sqrt{2^{16}} = 2^{\frac{16}{2}} = 2^8 = 256 \text{ //}$$

prop. 7 Simplifican

(1) Recordar que los números irracionales no pueden ser representados en forma de fracción; además su representación decimal es infinita no periódica.

11. $\sqrt{3} + 3\sqrt{3} = 4\sqrt{3}$ es irracional, pues la multiplicación de un racional $\neq 0$ con un irracional es siempre irracional.

111.
$$\frac{\sqrt{6}}{\sqrt{24}} = \sqrt{\frac{1}{24}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$
 es racional (EQ).

(12) Si $y = \left(\sqrt{\frac{5}{3}} + \sqrt{\frac{3}{5}}\right)^2$ d'and es el valor de $(5y + 1)^2$

Reemplazando:

$$15 \cdot \left(\sqrt{\frac{5}{3}} + \sqrt{\frac{3}{5}}\right)^{2} + 1$$
 $15 \cdot \left(\sqrt{\frac{5}{3}} + 2\sqrt{\frac{5}{3}}, \frac{3}{5}\right) + 1$

Perduer el cuadra do de binomio.

 $15 \cdot \left(\frac{5}{3} + 2\sqrt{1} + \frac{3}{5}\right) + 1$

Preducir

 $15 \cdot \left(\frac{5}{3} + 2\sqrt{1} + \frac{3}{5}\right) + 1$

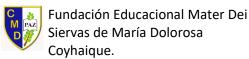
Operatoria

 $15 \cdot \left(\frac{5}{3} + 2 + \frac{3}{5}\right) + 1$

Operatoria

 $15 \cdot \left(\frac{5}{3} + 2 + \frac{3}{5}\right) + 1$

Operatoria


 $15 \cdot \left(\frac{5}{3} + 2 + \frac{3}{5}\right) + 1$

Operatoria

 $15 \cdot \left(\frac{5}{3} + 2 + \frac{3}{5}\right) + 1$

Operatoria

 $15 \cdot \left(\frac{5}{3} + 2 + \frac{3}{5}\right) + 1$

(13)
$$p = 3\sqrt{5} - 2$$
 y $q = \sqrt{5} + 3$ entonces $p \cdot q$

reemplaroundo:

$$3\sqrt{25} + 9\sqrt{5} - 2\sqrt{5} - 6$$

$$3 \cdot 5 + 7\sqrt{5} - 6$$

$$15 + 7\sqrt{5} - 6$$

$$9 + 7\sqrt{5}$$

(15)
$$\sqrt{50} - \sqrt{18} - \sqrt{8}$$
 $\sqrt{25\cdot 2} - \sqrt{9\cdot 2} - \sqrt{4\cdot 2}$
 $\sqrt{25\cdot 2} - \sqrt{2} - \sqrt{2}$
 $\sqrt{25\cdot 2} - \sqrt{2} - \sqrt{2}$
 $\sqrt{25\cdot 2} - \sqrt{2}$

(16)
$$(\sqrt{2}-1)^2 - (1+\sqrt{2})^2$$

($\sqrt{2}^2 - 2\sqrt{2} + 1$) - $(1^2 + 2\sqrt{2} + \sqrt{2})$

($2-2\sqrt{2} + 1$) - $(1+2\sqrt{2} + 2)$

($3-2\sqrt{2}$) - $(3+2\sqrt{2})$

($3-2\sqrt{2}$) - $(3+2\sqrt{2})$
 $3-2\sqrt{2}-3-2\sqrt{2}$

-4 $\sqrt{2}$ //

(i)
$$\sqrt{x^3 \times 4 \sqrt{x}} = \sqrt{3} \times 3 \times 4 \sqrt{x}$$
 $= \sqrt{3} \times 3 \times 4 \sqrt{x}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4 \times 4 \times 4}$
 $= \sqrt{3} \times 3 \times 4}$

(19)
$$2\sqrt{7} + \sqrt{14}$$
 $\sqrt{7} = \sqrt{7}(2\sqrt{7} + \sqrt{14}) = >$

Rationalizar.

$$\Rightarrow 2\sqrt{49} + \sqrt{98} = 2 \cdot 7 + \sqrt{49 \cdot 2} = 14 + 7\sqrt{2} = 7$$

$$7 = 7$$

$$7 = 7$$

$$7 = 7$$

$$\Rightarrow \frac{1}{2} \left(\frac{1}{2} + \sqrt{2} \right) = \frac{1}{2} + \sqrt{2}$$

$$= \frac{1}{2} + \sqrt{2}$$

$$= \frac{1}{2} + \sqrt{2}$$

(20)
$$\sqrt{48} + \sqrt{12} + \sqrt{3}$$

Descomponer raices.

 $\sqrt{16.3} + \sqrt{4.3} + \sqrt{3}$
 $4\sqrt{3} + 2\sqrt{3} + \sqrt{3}$

Peducii terminos semejantes.